Hair disorders in patients with cancer

Azael Freites-Martinez, MD,a Jerry Shapiro, MD,b Shari Goldfarb, MD,c Julie Nangia, MD,d Joaquin J. Jimenez, MD,e,f Ralf Paus, MD, FRSB,g,h,i and Mario E. Lacouture, MD

New York, New York; Houston, Texas; Miami, Florida; Manchester, United Kingdom; and Munster, Germany

Learning objectives
After completing this learning activity, participants should be able to identify the incidence and clinical presentation of hair disorders including alopecia (transient/persistent) in cancer patients; discuss the current pathogenic mechanisms underlying various hair disorders in the oncology setting; describe the preventive, reactive, and experimental management strategies, as applicable; recognize the impact of hair disorders on patients' quality of life; and develop a fundamental understanding of hair disorders in cancer patients.

Disclosures
The authors involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Editors
The editors involved with this CME activity and all content validation/peer reviewers of the journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Authors
The authors involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Planners
The planners involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s). The editorial and education staff involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Cytotoxic chemotherapies, molecularly targeted therapies, immunotherapies, radiotherapy, stem cell transplants, and endocrine therapies may lead to hair disorders, including alopecia, hirsutism, hypertrichosis, and pigmented and textural hair changes. The mechanisms underlying these changes are varied and remain incompletely understood, hampering the development of preventive or therapeutic guidelines. The psychosocial impact of chemotherapy-induced alopecia has been well documented primarily in the oncology literature; however, the effect of other alterations, such as radiation-induced alopecia, hirsutism, and changes in hair color or texture on quality of life have not been described. This article reviews clinically significant therapy-related hair disorders in oncology patients, including the underlying pathophysiological mechanisms, severity grading scales, patient-reported quality of life questionnaires, management strategies, and future translational research opportunities. (J Am Acad Dermatol 2019;80:1179-96.)

From the Dermatology Service,a Department of Medicine, and the Breast Cancer Medicine Service,a Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, and The Ronald O. Perelman Department of Dermatology,g New York University School of Medicine, New York; Lester and Sue Smith Breast Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston; Departments of Dermatology and Cutaneous Surgery9 and Biochemistry and Molecular Biology,7 Miller School of Medicine, University of Miami; Dermatology Research Centre,8 University of Manchester, and National Institute of Health Research Manchester Biomedical Research Centre, Manchester; and the Department of Dermatology, University of Munster.

Supported in part by National Institutes of Health/National Cancer Institute Cancer Center support grant P30 CA008748. Dr Lacouture is supported by the RJR Oncadermatology Fund. Dr Freites-Martinez is partially supported by Beca Excelencia, Academia Española de Dermatología y Venereología—Fundación Piel Sana. Dr Paus is supported by the National Institute of Health Research Manchester Biomedical Research Centre.

Dr Shapiro has been a consultant for Aclaris, Samumed, Incyte, Replicell Life Sciences, and Shook, Hardy, and Bacon LLP, who represent Sanofi Aventis US LLC. Dr Goldfarb has a speaking, consultant, or advisory role with Adgero Biopharmaceuticals, AMAG Pharmaceuticals, Procter and Gamble, and Valeant women's health pharmaceuticals. Dr Nangia received clinical trial funding from Paxman to the Baylor College of Medicine for conduct of the SCALP trial. Dr Paus has a consultant role with or receives research funding from Giuliani/Italy and Unilever/UK, and is founder/owner of Monasterium Laboratory/Germany. Dr Lacouture has a speaking, consultant, or advisory role with Abbvie, Quintiles, Boehringer Ingelheim, AstraZeneca Pharmaceuticals, Legacy Healthcare, Foamix, Adgero Bio Pharmaceuticals, Janssen R&D, Novartis, Paxman, and Novocure, and also receives research grants from Berg and Bristol-Myers Squibb. Drs Freites-Martinez and Jimenez have no conflicts of interest to disclose.

Accepted for publication March 18, 2018.

Correspondence to: Mario E. Lacouture, MD, Dermatology Service, Memorial Sloan Kettering Cancer Center, 60th St Outpatient Center, Ste 407, Rm 4312, 16 E 60th St, New York, NY 10022. E-mail: lacoutum@mskcc.org.

0190-9622/$36.00 © 2018 by the American Academy of Dermatology, Inc.

https://doi.org/10.1016/j.jaad.2018.03.055

Date of release: May 2019
Expiration date: May 2022

Scanning this QR code will direct you to the CME quiz in the American Academy of Dermatology’s (AAD) online learning center where after taking the quiz and successfully passing it, you may claim 1 AMA PRA Category 1 credit. NOTE: You must have an AAD account and be signed in on your device in order to be directed to the CME quiz. If you do not have an AAD account, you will need to create one. To create an AAD account: go to the AAD’s website: www.aad.org.
Cancer is a major public health problem worldwide. In 2016, >1.6 million new cancer cases were projected in the United States and 32 million worldwide; of these, approximately 60% received systemic therapies and 50% underwent radiotherapy. The most commonly encountered hair disorder is chemotherapy-induced alopecia (CIA). However, several other anticancer therapies may also be related to alopecia, such as radiation, targeted therapies, immunotherapies, stem cell transplants, and endocrine agents. In addition, alterations in hair pigmentation, texture, and growth may also be encountered, although they have not been systematically documented in this patient population. The impact of these disorders, namely alopecia, on cancer patients’ quality of life (QoL) cannot be disregarded. Indeed, 17% of patients with gynecologic cancers reported that alopecia was the most traumatic adverse event (AE) during their treatment, 30% were severely limited, and ≤14% would consider rejecting curative cancer therapies if they were associated with alopecia.

The information contained in this continuing medical education series intends to contribute to greater knowledge of these untoward events to optimize the assessment and management of hair disorders in patients with cancer.

EPIDEMIOLOGY
Key point
- Hair changes attributed to anticancer therapies are expected to occur in ≥65% of patients receiving cytotoxic therapies, 15% with targeted therapies, <2% on immunotherapies, and up to 100% in areas treated with radiotherapy

The widespread use of systemic anticancer therapies, their numerous combinations, and underreporting of hair disorders yield mixed incidence reports (Table I), but these events in varying degrees of severity are frequent across almost all types of interventions. The estimated incidence of CIA is approximately 65% and tends to vary by the specific drugs and different regimens. Alopecia is typically observed in almost every patient undergoing radiotherapy for central nervous system malignancies treated with photon radiotherapy (traditional radiotherapy) or proton radiotherapy, and intensity and rate both increase as the dose exceeds the threshold. With targeted therapies, the calculated incidence of all-grade alopecia was reported to be 15%. An overall incidence of all grades of alopecia were reported at 1% to 2% with immune checkpoint inhibitors, including anticytotoxic T-lymphocyte–associated protein-4, programmed cell death protein-1 receptors, and programmed cell death protein-1 ligand. Complete alopecia is attributed to the conditioning cytotoxic chemotherapies (ie, busulfan, melphalan, and fludarabine) developing in nearly 100% of patients who have undergone hematopoietic stem cell transplantation. Endocrine therapies (ie, tamoxifen, anastrozole, letrozole, fulvestrant, and exemestane) have been related to alopecia in ≤25% of patients. Whereas alopecia receives the most attention among hair disorders in the oncology realm, changes in hair structure (becoming curly or straight) and color (hyper- or hypopigmentation) have been reported in approximately 65% of patients during and after cytotoxic chemotherapies, in 30% of those receiving targeted therapies, and in 2% with immunotherapies (Table I).

CLINICAL FEATURES
Key point
- The spectrum of hair disorders in cancer patients encompasses all hair changes, including alopecia, pigimentary changes, textural changes, and cycle alterations

Hair disorders in cancer patients occur because of disturbances in hair follicle cycling and functioning and hair shaft synthesis, which results in effluvium during anagen or catagen. Clinical features of hair disorders induced by anticancer therapies vary depending on the anticancer therapy given, its half-life, dose, schedule, route and rate of administration, whether it is administered alone or in combination with other anticancer therapies, and patient factors (Table II).

Alopecia
CIA usually begins within weeks after the first dose of cytotoxic chemotherapy as a patchy or diffuse anagen effluvium with predominance on areas of increased friction, such as the crown and temporo-occipital areas, that may progress to
complete alopecia in 2 to 3 months. In addition, eyelash and eyebrow alopecia and alopecia of other body areas can be observed in association with scalp alopecia in ≤33% of patients who are receiving taxanes. Although usually asymptomatic, CIA could also be related with trichodynia and pruritus (11%). CIA is typically reversible within 2 to 6 months after chemotherapy is discontinued.

Trichoscopic findings in CIA include black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair shaft (Fig 1).

Radiotherapy-induced alopecia (RIA) is characterized by an anagen effluvium caused by acute damage of the hair follicle. An alopecia patch confined to the area of radiotherapy is usually observed 1 to 3 weeks after the first irradiation, and hair regrowth usually occurs 2 to 6 months after radiotherapy. Radiation dermatitis and cutaneous injury may also accompany the alopecia (Fig 2). Yellow and black dots have been described as the predominant trichoscopic findings in 60% of RIA, followed by short vellus hair (50%), the peripilar sign (20%), and broken hairs (10%); trichoscopic findings are also described in patients with alopecia areata and androgenetic alopecia.

Whereas mild diffuse alopecia is frequent with epidermal growth factor receptor (EGFR) inhibitors (eg, erlotinib, afatinib, cetuximab, and panitumumab), scarring alopecia has been reported in 5% of patients treated with cetuximab, which may be a consequence of a secondary scalp bacterial infection (Fig 3) manifested as erosive pustular dermatitis or tufted hair folliculitis. Alopecia areata and universalis are considered immune-related AEs occurring in 2% of patients receiving ipilimumab.

Among patients undergoing stem cell transplantation, diffuse alopecia is reported in association with conditioning chemotherapy in nearly 100% of patients. Hair changes may occur with acute graft-versus-host disease, including features of nonscarring alopecia with diffuse hair thinning, patchy hair loss, and premature graying. Alopecia areata and other autoimmune skin conditions such as vitiligo have been reported in the graft-versus-host disease setting. Endocrine therapies have been associated with alopecia, usually mild in severity with a pattern similar to androgenetic type. Despite most cases of alopecia in cancer patients being transitory, 14% of childhood cancer survivors and 30% of breast cancer survivors will develop persistent or even permanent alopecia.

Pigmentary and textural hair changes

Textural and pigmentary hair changes are frequent with anticancer therapies; however, these are reversible upon drug discontinuation. Pigmentary hair changes include depigmentation and hyperpigmentation and are most apparent on the scalp, although the eyebrows, eyelashes, and body hair may be affected. Hair hypopigmentation has been reported with the multikinase inhibitors pazopanib, sunitinib, and regorafenib, whereas EGFR inhibitors result in hyperpigmentation of scalp and facial hair (~50%). Hair regregation has been described as a possible marker of tumor response in 14 patients receiving anti−programmed cell death protein-1 receptor and anti−programmed cell death protein-1 receptor ligand therapy for lung cancer.

In addition, straight hair may become curly or wavy in 65% of patients with cancer after treatment with cytotoxic chemotherapy. With targeted therapies, hair growth on the scalp can slow down and become finer, curlier, and more brittle.

Hirsutism, hypertrichosis, and trichomegaly

Excessive hair growth around the periocular area, hirsutism, and trichomegaly have been reported as an AE of EGFR inhibitors. Eyelash trichomegaly also has been reported after fibroblast growth factor receptor inhibitor therapy. These alterations typically resolve after discontinuation of treatment, although in some cases they can persist for several months. Hirsutism can be seen in patients with cancer who receive endocrine therapies (antiestrogen agents), and the low incidence is likely related to underreporting.

ETIOLOGY AND PATHOGENIC MECHANISMS

Key points

- The pathogenic mechanisms of anticancer therapy−induced alopecia and other hair disorders varies depending on causal therapy
- The hair matrix keratinocytes of anagen hair follicles have a high mitotic activity,
Table I. Selected anticancer therapies (representative) commonly causing hair changes

<table>
<thead>
<tr>
<th>Hair disorders and cancer therapy</th>
<th>Tumor types indicated or under investigation</th>
<th>Incidence (%) or case reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecia/hair loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide15-19</td>
<td>Breast cancer, leukemia, lymphoma, multiple myeloma, neuroblastoma, retinoblastoma, and ovarian cancer</td>
<td>25 (low dose), ~100 (high dose)</td>
</tr>
<tr>
<td>Daunorubicin20,21</td>
<td>AML and ALL</td>
<td>~100</td>
</tr>
<tr>
<td>Docetaxel22-26</td>
<td>Breast cancer, gastric cancer, head and neck cancer, lung cancer, and prostate cancer</td>
<td>~100</td>
</tr>
<tr>
<td>Doxorubicin27-29</td>
<td>ALL, AML, thyroid cancer, breast cancer, gastric cancer, lung cancer, bladder cancer, lymphomas, neuroblastoma, sarcomas, and Wilms tumor</td>
<td>80-100</td>
</tr>
<tr>
<td>Etoposide30-32</td>
<td>Small cell lung cancer and testicular cancer</td>
<td>~55</td>
</tr>
<tr>
<td>Idarubicin33-35</td>
<td>AML</td>
<td>~50</td>
</tr>
<tr>
<td>Irinotecan36-40</td>
<td>Colorectal cancer</td>
<td>~58</td>
</tr>
<tr>
<td>Paclitaxel41-47</td>
<td>Breast cancer, lung cancer, gynecologic malignancies, and Kaposi sarcoma</td>
<td>~100</td>
</tr>
<tr>
<td>Topotecan48-51</td>
<td>Small cell lung cancer, ovarian cancer, and cervical cancer</td>
<td>20 (oral), 49 (intravenous)</td>
</tr>
<tr>
<td>Radiotherapies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon radiotherapy (traditional radiotherapy)52</td>
<td>Primary CNS tumors, brain metastasis, and head and neck cancer</td>
<td>~100</td>
</tr>
<tr>
<td>Proton radiotherapy53,54</td>
<td>Medulloblastoma, ependymoma, other primary CNS tumors, and head and neck cancer</td>
<td>75-100</td>
</tr>
<tr>
<td>Targeted therapies6,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vismodegib56</td>
<td>Basal cell carcinoma (locally advanced or unresectable)</td>
<td>62</td>
</tr>
<tr>
<td>Sorafenib57</td>
<td>Hepatocellular carcinoma, renal cell carcinoma, and thyroid cancer</td>
<td>26</td>
</tr>
<tr>
<td>Sunitinib57</td>
<td>Metastatic renal cell carcinoma and gastrointestinal stromal tumor</td>
<td>6</td>
</tr>
<tr>
<td>Regorafenib</td>
<td>Colorectal cancer</td>
<td>4</td>
</tr>
<tr>
<td>Vemurafenib</td>
<td>Melanoma (stage IV)</td>
<td>24</td>
</tr>
<tr>
<td>Dabrafenib</td>
<td>Melanoma (stage IV)</td>
<td>19</td>
</tr>
<tr>
<td>Targeted therapies in pediatric population (including imatinib, dasatinib, erlotinib, vandetanib, sorafenib, cabozantinib, and pazopanib)58</td>
<td>hematologic and CNS tumors</td>
<td>3</td>
</tr>
<tr>
<td>Immunotherapies7,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTLA-4 inhibitor</td>
<td>Melanoma (stage III-IV)</td>
<td>1-2</td>
</tr>
<tr>
<td>PD-1 and PD-L1 inhibitors</td>
<td>Melanoma (stage IV), lung, non-Hodgkin lymphoma, urothelial carcinoma, and advanced squamous cell carcinoma, Merkel cell cancer</td>
<td>2</td>
</tr>
<tr>
<td>Stem cell transplants5,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditioning chemotherapy (busulfan, fludarabine, melphalan)</td>
<td>hematologic cancers</td>
<td>~100</td>
</tr>
<tr>
<td>Endocrine therapies9</td>
<td></td>
<td>~20</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>Breast cancer, neuroendocrine tumors</td>
<td>2</td>
</tr>
<tr>
<td>Octreotide</td>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td>Aromatase inhibitors (anastrozole, letrozole, exemestane)</td>
<td>hematologic cancers</td>
<td>25</td>
</tr>
</tbody>
</table>

Continued
which makes them especially vulnerable to anticancer therapies

- Paradoxically, some anticancer therapies can promote hair growth and textural and hair color changes

Although the clinical manifestation of CIA from different therapies may be similar (albeit with subtle variations), accumulating evidence suggests that the molecular underpinnings are varied and share several molecular damage—response pathways. In particular, massive p53-dependent apoptotic cell death of hair follicle matrix keratinocytes and of hair follicle melanocytes plays a pivotal role. In rodent and human CIA models, rapidly proliferating anagen hair follicles and their pigmented system, which are both sensitive to toxins, are the primary targets of cytotoxic chemotherapy—induced hair follicle damage, reducing the proliferation rate and promoting the apoptosis of matrix keratinocytes and melanogenesis in the hair bulb. Telogen hair follicles are less sensitive than anagen hair follicles to chemotherapy, presumably because of low level proliferation and arrested pigmented activity. RIA is a dose-dependent acute damage to actively dividing matrix cells of anagen follicles, followed by telogen shedding because of premature catagen entry of follicles in late anagen. Doses as low as 2 Gy in a single fraction have been shown to cause temporary alopecia.

Targeted therapies work by blocking oncogenic pathways needed for cell growth and survival. In mice, dysregulation of the EGFR-Ras-Raf pathway can result in abnormal hair follicle morphogenesis. However, it is not known why, paradoxically,

| Table I. Cont’d |
|-----------------|---|------------------|
| Hair disorders and cancer therapy | Tumor types indicated or under investigation | Incidence (%) or case reports |
| Pigmentary hair changes | Targeted therapies (cabozantinib, pazopanib, sorafenib, sunitinib, imatinib) | Renal cell carcinoma, thyroid cancer, hepatocellular \n| | | carcinoma, desmoid tumors, gastrointestinal stromal tumor, and pancreatic neuroendocrine tumors |
| | PD-1 and PD-L1 inhibitors | Melanoma (stage IV), lung, non-Hodgkin lymphoma |
| Textural hair changes | Targeted therapies (erlotinib, cetuximab, gefitinib, lapatinib, and panitumumab) and BRAF inhibitors | Tumors with EGFR or BRAF mutations |
| | Cytotoxic chemotherapies (cyclophosphamide and taxanes) | Breast cancer, AML, ALL, lymphoma, multiple myeloma, neuroblastoma, and ovarian cancer |
| Hirsutism and hypertrichosis | EGFR/MEK inhibitors (erlotinib, cetuximab, gefitinib, afatinib, lapatinib, and panitumumab) | Tumors with EGFR mutations |
| | Targeted therapies in pediatric population (EGFR/MEK inhibitors, and MKIs) | CNS tumors, squamous cell carcinoma, and sarcomas |
| Eyelash trichomegaly | Targeted therapies: EGFR inhibitors | Tumors with EGFR mutations |
| | Targeted therapies in the pediatric population (imatinib, dasatinib, erlotinib, vandetanib, sorafenib, cabozantinib, and pazopanib) | Hematologic and CNS tumors |

AML, Acute myelogenous leukemia; ALL, acute lymphocytic leukemia; BRAF, proto-oncogene B-Raf; CNS, central nervous system; CTLA-4, cytotoxic T lymphocyte—associated protein 4; EGFR, epidermal growth factor receptor; MKI, multikinase inhibitors; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1.
EGFR inhibitors result in scalp alopecia but also cause hirsutism and eyebrow and eyelash trichomegaly.

Immunotherapies (anti—cytotoxic T-lymphocyte—associated protein-4 and programmed cell death protein-1 receptor and its ligand) and stem cell transplants may also result in alopecia, with a clinical and histologic pattern consistent with alopecia areata, likely caused by the activation of inflammatory responses against hair follicle antigens and an

| Table II. Clinical features of hair disorders attributed to anticancer therapies |
|---------------------------------|---------------------------------|
| Cancer therapy | Clinical features by predominant hair disorders |
| Cytoxic chemotherapies | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| Topoisomerase-interacting agents (teniposide, daunorubicin, doxorubicin, idarubicin, irinotecan, and topotecan) | 1. Alopecia: nonscarring, geometric shapes, or diffuse anagen effluvium is usually seen, in the irradiated area. May coexist with different grades of radiation dermatitis. Trichoscopy: yellow and black dots, short vellus hair, peripilar sign, and broken hair shafts 2. Pigmentary and textural hair changes: hair hypopigmentation and decreased shaft diameter |
| Antimicrotubule agents (paclitaxel, docetaxel, vincristine, and vinblastine) | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| VEGFR/PDGFR/KIT inhibitor (sorafenib, regorafenib, imatinib, dasatinib, sunitinib, nilotinib, ponatinib, axitinib, and pazopanib) | 1. Alopecia: nonscarring, geometric shapes, or diffuse anagen effluvium is usually seen, in the irradiated area. May coexist with different grades of radiation dermatitis. Trichoscopy: yellow and black dots, short vellus hair, peripilar sign, and broken hair shafts 2. Pigmentary and textural hair changes: hair hypopigmentation and decreased shaft diameter |
| BRAF inhibitor (vemurafenib and dabrafenib) | 1. Alopecia: nonscarring, geometric shapes, or diffuse anagen effluvium is usually seen, in the irradiated area. May coexist with different grades of radiation dermatitis. Trichoscopy: yellow and black dots, short vellus hair, peripilar sign, and broken hair shafts 2. Pigmentary and textural hair changes: hair hypopigmentation and decreased shaft diameter |
| Radiotherapy | 1. Alopecia: nonscarring, geometric shapes, or diffuse anagen effluvium is usually seen, in the irradiated area. May coexist with different grades of radiation dermatitis. Trichoscopy: yellow and black dots, short vellus hair, peripilar sign, and broken hair shafts 2. Pigmentary and textural hair changes: hair hypopigmentation and decreased shaft diameter |
| Targeted therapies | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| EGFR inhibitor (cetuximab, panitumumab, gefitinib, erlotinib, afatinib, and lapatinib) | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| VEGFR/PDGFR/KIT inhibitor (sorafenib, regorafenib, imatinib, dasatinib, sunitinib, nilotinib, ponatinib, axitinib, and pazopanib) | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| Immunotherapies | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| Ipilimumab (CTLA-4) | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| Programmed cell death protein (PD-1) receptors and its ligand (PD-L1) (eg, pembrolizumab, nivolumab, avelumab, and atezolizumab) | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| Stem cell transplantation | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| Vismodegib | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |
| Endocrine therapies (leuprolide, tamoxifen, raloxifene, anastrozole, exemestane, letrozole, and octreotide) | 1. Alopecia: nonscarring, patchy, or diffuse dystrophic anagen or catagen effluvium with predominance on areas of increased friction (crown and temporo-occipital areas). Usually recover in 2-6 months after chemotherapy completion. Eyelash, eyebrow, axillary, and pubic hair could be involved (recovery is generally more rapid than scalp alopecia). Trichoscopy: black dots, yellow dots, exclamation mark hairs, and color and thickness changes along the hair may exist 2. Pigmentary and textural hair changes: slight changes from dark to graying, and from graying to dark. Upon regrowth, straight hair may become curly or wavy, and finer 3. Hirsutism |

CIA, Chemotherapy-induced alopecia; CTLA-4, cytotoxic T lymphocyte—associated protein 4; EGFR, epidermal growth factor receptor; PDGFR, platelet-derived growth factor receptors; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1; VEGF, vascular endothelial growth factor.
imbalance of the immune tolerance in the hair follicle environment. These findings are concordant with other immune-related AEs reported in patients who are treated with immunotherapy, in which autoimmune T and B cell–driven mechanisms underlie toxicities.7,94

The mechanisms by which endocrine therapies result in alopecia is via counteracting the anagen-prolonging effects of 17β-estradiol118-120 and result in increased hair growth— inhibitory actions of androgens, which is probably reflected by the development of hair thinning with a predominant androgenetic pattern.121,122

The pigmentary changes in regrowing hairs could be explained by an impaired transfer of melanin from hair follicle keratinocytes to the hair shaft and the generation of oxidative damage123 with the induction of apoptosis of hair follicle melanocytes and melanocyte stem cells.116

Changes in hair structure depend on multiple interacting parameters, including hair shaft keratins and hair follicle asymmetric cell proliferation.124,125

HAIR DISORDER SEVERITY GRADING

Key point

- Adverse events in oncology clinical trials are graded using the Common Terminology Criteria for Adverse Events

The documentation of AEs is critical for patient safety and for the development of a toxicity profile for each anticancer drug/regimen. In the oncology literature, alopecia is graded by the following AE grading instruments; the World Health Organization,126 the Dean scale,127 the Eastern Cooperative Oncology Group,128 Sredni et al,129 the National Cancer Institute,130 the EGFR Inhibitors Skin Toxicity Tool,131 and the Common Terminology Criteria for Adverse Events Version 5.0 (CTCAE v5.0 Table III).132 Of these grading

Fig 1. Chemotherapy-induced alopecia. A, Clinical image of scalp alopecia 1 month after the first taxane-based chemotherapy cycle. B, Pohl–Pinkus constrictions observed in monilethrix-like hairs after weekly cyclophosphamide-based chemotherapy. C, Trichoscopy of chemotherapy-induced alopecia reveals black dots, fractured hair shafts, and vellus hairs.

Fig 2. Radiotherapy-induced alopecia. Alopecia, erythema, and ulceration related to photon radiotherapy used for treating scalp metastasis. Ulceration resulted in permanent/cicatrical alopecia.
instruments, the CTCAE v5.0132 is the standard for the description and exchange of drug safety information in cancer treatments. Its use is mandatory in oncology trials; therefore, data on alopecia incidence and severity are reported according to the CTCAE. There are some limitations in alopecia grading (CTCAE grades 1 and 2) that may not capture subtle changes in severity or pattern, and therefore more granular severity grading tools are recommended for studies investigating anticancer therapy–induced alopecia.

For eyelash and eyebrow alopecia, there are no validated grading scales, whereas hypertrichosis and trichomegaly are graded with the CTCAE v5.0.132 The modified Ferryman–Gallwey scoring system may also be used to grade hypertrichosis.133

QUALITY OF LIFE IN PATIENTS WITH CANCER WITH HAIR DISORDERS

Key points
- Chemotherapy-induced scalp, eyelash, and eyebrow alopecia lead to a negative psychosocial impact
- The impact of other hair disorders in oncology has not been reported, but is likely significant

Hair-related AEs have a profound impact on cancer patient QoL. CIA is one of the most clinically visible and distressing AEs,134 and has been cited as the most disturbing anticipated AE by 58% of breast cancer patients before chemotherapy.134 In a multicenter study, 55% of 168 breast cancer patients reported high psychological distress from CIA.135 The impact can be so immense that coping with hair loss was felt to be more difficult than the loss of a breast,134,135 and can even lead patients to refuse treatment (8%).134,137 In addition, eyelash and eyebrow alopecia resulted in psychological distress in breast cancer patients who were treated with taxane-based chemotherapy.138

The impact on QoL of changes of hair color and texture, hirsutism, and hypertrichosis in cancer patients has not been reported. Treatment-related growth of unwanted facial hair can also affect QoL, as shown in a previous survey-based study of several thousand women, where 62% had concerns regarding unwanted hair on the upper lip.139,140 Therefore, it is important to query and measure the impact on QoL of hair disorders attributed to anticancer therapies, given the longer survival times and the increasing number of medications leading to these events.

Specific quality of life instruments

Assessing the patient’s own perception of their symptoms using patient-reported outcome measures, such as PRO-CTCAE, may complement our understanding of drug-induced hair disorders.131 Specific instruments to assess the impact of hair disorders on cancer patients’ QoL include the Chemotherapy-induced Alopecia Distress Scale (validated in Korean patients and translated into...
English), which comprises 17 questions in 4 domains. In addition, the Eyelash Satisfaction Questionnaire was validated in a cohort of 595 patients with cancer; it includes 23 questions in 3 domains.143,144

MANAGEMENT

Key point

- Most preventive or reactive strategies are based on uncontrolled studies; however, the US Food and Drug Administration has cleared 2 dynamic scalp cooling devices for the prevention of CIA in patients treated with cytotoxic chemotherapies for solid tumors.

Anticancer therapy—induced alopecia

Given the varied alopecia-inducing pathogenic mechanisms and an individual’s inherent susceptibility, no single strategy may be effective for alopecia induced by different therapies.75 Management for anticancer therapy—induced alopecia can be divided into preventive and reactive strategies (Table IV).

Preventive strategies. There are no preventive pharmacologic strategies that have demonstrated satisfactory efficacy to justify their general use. For example, topical minoxidil 2% twice daily showed no benefit to prevent CIA in a prospective trial of 10 patients.145 However, in a randomized trial including 22 patients with breast cancer who were treated with cytotoxic chemotherapy, topical minoxidil 2% solution reduced the duration of complete alopecia by 50 days when compared to placebo (87 vs 137 days).146 Trials evaluating this potential preventative strategy are needed. The topical calcitriol (BPM31543) showed benefit in a phase I trial of 31 patients and is currently under development.147

Scalp cooling has become the most widely used method for the prevention of CIA.148 Scalp cooling systems include static devices (eg, glycerin-based, Chemocoldcaps [Chemotherapy Cold Caps, Inc, Dallas, TX], and Penguin [Penguin Cold Caps, London, United Kingdom])149,150 and dynamic scalp cooling systems that were recently cleared by the US Food and Drug Administration (DigniCap [Dignitana, Lund, Sweden], in 2015, and Orbis [Paxman Coolers Ltd, Huddersfield, United Kingdom], in 2017).151,152 The plausible mechanisms for conferring protection to the hair follicle include the reduced availability of cytotoxic drug to the hair follicle (vasoconstriction induces a decrease of 20% of scalp blood flow),127,153,154 the relative reduced follicular uptake of cytotoxic therapies,155 and decreased follicular metabolic activity.156

The success of scalp cooling appears to depend on the type of the chemotherapy regimen. In a prospective study in 124 women with breast cancer who were receiving taxane-based chemotherapy, Dignicap scalp cooling conferred protection against hair loss (Dean scale score of 0-2) in 66% compared to 0% in the uncooled group.151 In a multicenter, randomized study using the Paxman Orbis scalp cooling system,152 hair preservation was observed in 50% (cooling group) versus 0% (controls) after the
Table III. Grading scales used for anticancer therapy–induced hair changes

<table>
<thead>
<tr>
<th>Alopecia grading</th>
<th>CTCAE v5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Hair loss of <50% of normal for that individual that is not obvious from a distance but only on close inspection; a different hairstyle may be required to cover the hair loss but it does not require a wig or hairpiece to camouflage</td>
<td>Hair loss of >=50% normal for that individual that is readily apparent to others; a wig or hair piece is necessary if the patient desires to completely camouflage the hair loss; associated with psychosocial impact</td>
</tr>
</tbody>
</table>

Dean’s grading scale of hair loss protection from anticancer therapies

<table>
<thead>
<tr>
<th>WHO handbook for reporting results of cancer treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal hair loss</td>
</tr>
<tr>
<td>Hair loss <50% of normal for that individual that may or may not be noticeable to others but is associated with increased shedding and overall feeling of less volume. May require different hairstyle to cover but does not require hairpiece to camouflage</td>
</tr>
<tr>
<td>Increase in length, thickness or density of hair that the patient is either able to camouflage by periodic shaving or removal of hairs or is not concerned enough about the overgrowth to use any form of hair removal</td>
</tr>
</tbody>
</table>

EGFR Inhibitor Skin Toxicity Tool (MESTT)

<table>
<thead>
<tr>
<th>Hypertrichosis grading</th>
<th>CTCAE v5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in length, thickness or density of hair at the usual exposed areas of the body (face area plus/minus arms) that requires frequent shaving or use of destructive means of hair removal to camouflage; associated with psychosocial impact</td>
<td></td>
</tr>
</tbody>
</table>

Hirsutism grading

<table>
<thead>
<tr>
<th>CTCAE v5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>In women, increase in length, thickness or density of hair in a male distribution that requires daily shaving or consistent destructive means of hair removal to camouflage; associated with psychosocial impact</td>
</tr>
</tbody>
</table>
Table IV. Management of hair disorders in patients receiving anticancer therapies

<table>
<thead>
<tr>
<th>Hair disorder</th>
<th>Interventions</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy-induced alopecia (CIA)</td>
<td>Preventive strategies: Scalp cooling: caps or cooling systems, only for cancer patients with solid tumors
Contraindications to scalp cooling include hematological malignancies, and the following: cold sensitivity and cold triggered diseases, central nervous system malignancies, small cell carcinoma of the lung, cancers of the head and neck, skin cancer, and in pediatric patients
Topical minoxidil 2% daily, over the entire scalp throughout chemotherapy and up to 4 months post-chemotherapy</td>
<td>IB</td>
</tr>
<tr>
<td>Radiotherapy-induced alopecia (RIA)</td>
<td>Reactive strategies: Topical minoxidil 5% daily (radiation dermatitis should be managed first with topical corticosteroid, if present)</td>
<td>IV</td>
</tr>
<tr>
<td>Alopecia attributed to targeted therapies (EGFR inhibitors, VEGFR/PDGFR/BRAF inhibitors)</td>
<td>Reactive strategies: Non-inflammatory alopecia (VEGFR/PDGFR): topical minoxidil 5% daily continued until 6 months after therapy ends
If scalp inflammation (EGFR inhibitors): topical corticosteroids; if secondary infection present treat with culture/sensitivity-driven oral antibiotics</td>
<td>IV</td>
</tr>
<tr>
<td>Alopecia attributed to Immunotherapies (CTCLA-4, PD1, PDL-1)</td>
<td>High potency topical corticosteroid if alopecia areata; rule out thyroid dysfunction (immune related adverse event)</td>
<td>IV</td>
</tr>
<tr>
<td>Alopecia attributed to stem cell transplant</td>
<td>If alopecia areata, topical corticosteroids or Janus kinase inhibitors
If diffuse or pattern alopecia (similar pattern to CIA); topical minoxidil 5% daily</td>
<td>IV</td>
</tr>
<tr>
<td>Alopecia attributed to vismodegib</td>
<td>CTCAE v5.0 grades 1 and 2: topical minoxidil 5% daily continued until 6 months post-therapy</td>
<td>IV</td>
</tr>
<tr>
<td>Endocrine therapy-induced alopecia (EIA)</td>
<td>CTCAE v5.0 grades 1 and 2: topical minoxidil 5% daily</td>
<td>III</td>
</tr>
<tr>
<td>Eyebrow and eyelashes alopecia</td>
<td>Chemotherapy-induced alopecia: topical bimatoprost solution 0.03%</td>
<td>IB</td>
</tr>
<tr>
<td>Pigmentary and textural hair changes</td>
<td>If needed, options such as hair coloring and changes in hairstyle should be recommended (eg, hair straightener, hair permanent)</td>
<td>IB</td>
</tr>
<tr>
<td>Hirsutism and hypertrichosis</td>
<td>Reactive strategies: CTCAE v5.0 grade 1 (mild hair growth)—local therapy, such as epilation, depilation, shaving, efflornithine, or laser treatment; CTCAE v5.0 grade 2 (prominent thick hairs, associated with psychosocial impact)—laser or intense pulsed light
Trimming for eyelash trichomegaly, referral to an ophthalmologist when irritation or discomfort is present
Patients can be reassured that these hair changes are temporary; normal growth should begin within 1 month after cessation of medication</td>
<td>III</td>
</tr>
<tr>
<td>General recommendations</td>
<td>As a prevention of patient distress, we recommend patient education and support
Most of the hair changes are temporary. However, if therapy is requested, this should be discussed to have realistic expectations of therapy outcome
Camouflage techniques (eg, crayons, powder, volumizers, hair weaves/hair extension, scalp micropigmentation/tattoo and hairpieces) could be recommended
Camouflage techniques (eg, crayons, powder, volumizers, hair weaves/hair extension, scalp micropigmentation/tattoo and hairpieces) could be recommended
Camouflage techniques (eg, crayons, powder, volumizers, hair weaves/hair extension, scalp micropigmentation/tattoo and hairpieces) could be recommended
Camouflage techniques (eg, crayons, powder, volumizers, hair weaves/hair extension, scalp micropigmentation/tattoo and hairpieces) could be recommended
Camouflage techniques (eg, crayons, powder, volumizers, hair weaves/hair extension, scalp micropigmentation/tattoo and hairpieces) could be recommended</td>
<td></td>
</tr>
</tbody>
</table>

CTCAE v5.0, Common Terminology Criteria for Adverse Events Version 5.0; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; EGFR, epidermal growth factor inhibitor; PDGFR, Platelet-derived growth factor receptors; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; VEGF, vascular endothelial growth factor.
fourth chemotherapy cycle (taxane/anthracycline or both). Another prospective randomized study of 79 patients (41 receiving Dignicap scalp cooling) reported lower hair preservation rates (39%) among patients undergoing scalp cooling versus 0% in the no scalp cooling arm. Differences between devices are likely related to operator experience and types of chemotherapy regimens of patients enrolled, with patients undergoing taxane-based regimens showing a higher benefit from scalp cooling. Regarding safety, the most common AEs include headache (11%), nausea (4%), and dizziness (3%). A metaanalysis of 10 trials that included 1959 patients demonstrated no differences in the incidence of scalp metastases between cooled (0.61%) versus noncooled patients (0.41%). Scalp cooling has been reported to be effective in 3 patients with breast cancer who were treated with taxane-based chemotherapy and with CIA grade 2 (CTCAE) in order to prevent alopecia in future chemotherapy sessions, and consequently allow earlier reestablishment of scalp hair density; however, the risk of frostbite should be considered. In general, precooled caps remain popular because of their widespread availability; however, 4 cases of thermal injury have been reported because of improper cap applications.

Despite the relative success of the scalp cooling system in preventing CIA, this system has been reported as not effective to prevent RIA. In addition, scalp cooling system use is not reimbursable by insurance companies, and costs may be elevated. Financial assistance may be obtained through hairtostay.org and coldcapitalfund.org.

There are no data on preventive strategies for noncytotoxic agent–induced alopecia. Therefore, we recommend pretherapy counseling and on-therapy evaluations by the oncology team for atypical patterns or severity of alopecia, so that any comorbidities or exacerbating factors may be addressed and the patient can be referred to a dermatologist if indicated.

Reactive strategies. Reactive strategies are primarily based on case series, case reports, and expert opinion. Immunotheapies and stem cell transplants have been related to alopecia areata. Therefore, topical and intralasional therapies with corticosteroids have shown efficacy in anecdotal reports of 2 patients. Cancer patients may have hormone-sensitive tumors that could react with systemic therapies used for androgenetic alopecia (eg, spironolactone, finasteride, or ciproterone acetate); we have therefore held with caution these strategies for cases of persistent alopecia in cancer survivors. Camouflage and supportive care should be provided to patients with CIA (Table IV).

Eyelash and eyebrow alopecia
Relatively inexpensive cosmetics and camouflage products can be used as long as eyelashes are still present. The effect of bimatoprost solution 0.03% on chemotheraphy-induced eyelash hypotrichosis was examined in a controlled study of 130 patients with breast cancer who were receiving cytotoxic chemotherapy showing that treatment with bimatoprost resulted in increased length and thickness compared to the vehicle control group (eyelash length 38% vs 16%; eyelash thickness 245% vs 33%).

Pigmentary and textural hair changes
Hair repigmentation and textural hair shaft changes have been reported with targeted and immunotherapies. Initially, most patients are satisfied with their new hair characteristics. Nevertheless, if management is requested, options such as hair dyeing and changes in hairstyle (ie, straightening or curling) should be recommended because they pose no additional risk in patients with cancer. The use of hair dyes and their association with cancer development is conflicting with non-Hodgkin lymphoma, none to insignificant for leukemias, and nonexistent for breast cancer.

Hirsutism, hypertrichosis, and trichomegaly
Topical or cosmetic interventions are recommended (eg, waxing or bleaching). Laser and photoepilation treatments are the most effective, especially in patients with lighter skin and dark-colored hairs. For eyelash and eyebrow trichomegaly related to targeted therapies, eyelash clipping and referral to an ophthalmologist is indicated for patients with ocular symptoms.

Experimental therapies
Several preclinical approaches have been tried for CIA and RIA, although only a few have shown some clinical benefit. Moreover, there are no public trials for the prevention or management of other anticaner therapy–induced hair disorders.

AS101 (ammonium trichloro [dioxoethylene-o,oʹ]tellurate) is an immunomodulatory tellurium compound based on a derivative of cisplatin. The drug has been shown to protect against CIA by reducing the severity, but it does not prevent hair
loss. A topical botanical blend solution for the treatment of androgenetic alopecia is currently being investigated for the prevention of permanent CIA in a double-blind, randomized controlled trial in breast cancer survivors. It is hypothesized that this herbal medication may normalize apoptotic processes in hair follicle cells and reduce chemotherapy-induced inflammation in the scalp.

Tempol is a nitric oxide radioprotector, and its topical formulation has been found to be protective against RIA in both animal models and humans. In a phase Ib study, the application of tempol gel 15 minutes before radiotherapy followed by wash-off led to full scalp retention in 3 of 5 evaluable patients.

CHALLENGES AND FUTURE PERSPECTIVES

Despite the prevalence and psychosocial impact of anticancer therapy—induced hair disorders, research into their clinical presentation, pathophysiology, and management strategies has not received the attention it justifies. A comprehensive knowledge of the impact of hair disorders on QoL would be critical to optimize the shared decision-making process between doctors and patients regarding cancer therapies. As patients live longer on cancer therapies, there is a need to identify risk factors of clinically significant events and to develop improved and widely available preventive strategies, all of which would contribute to the optimal and comprehensive care of patients with cancer.

REFERENCES

VOLUME 80, NUMBER 5
JAMA Dermatol

